```
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0822 P)^{2}\right.\)
    +0.3787 P ]
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
```

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Ni} 1-\mathrm{Ol}$	1.860 (4)	$\mathrm{C} 8-\mathrm{N} 1$	1.442 (7)
$\mathrm{Ni} 1-\mathrm{N} 2$	1.867 (5)	C8-C9	1.485 (9)
$\mathrm{Ni} 1-\mathrm{Nl}$	1.872 (5)	C9-N2	1.476 (7)
Nil-S1	2.163 (3)	$\mathrm{C} 10-\mathrm{N} 2$	1.313 (7)
S1-C15	1.725 (6)	$\mathrm{C} 10-\mathrm{C} 14$	1.440 (8)
$\mathrm{Cl}-\mathrm{Ol}$	1.311 (7)	$\mathrm{C} 10-\mathrm{C} 11$	1.517 (8)
$\mathrm{C} 1-\mathrm{C} 2$	1.412 (8)	C13-C14	1.509 (8)
C6-C7	1.410 (9)	C14-C15	1.343 (8)
C7-N1	1.295 (7)	C15-S2	1.775 (7)
$\mathrm{Ol}-\mathrm{Ni} 1-\mathrm{N} 2$	178.1 (2)	C15-S1-Nil	110.3 (2)
$\mathrm{Ol}-\mathrm{Ni} 1-\mathrm{Nl}$	94.0 (2)	$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 6$	124.4 (5)
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1$	86.3 (2)	N1-C7-C6	127.0 (6)
$\mathrm{Ol}-\mathrm{Ni} 1-\mathrm{Sl}$	81.87 (15)	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	109.0 (5)
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{S} 1$	98.0 (2)	N2-C9-C8	109.1 (5)
N1-Nil-S1	174.09 (14)	N2-C10-C14	127.3 (5)

Data was corrected for Lorentz-polarization effects. The structure was solved by direct and Fourier methods and refined by full-matrix least-squares techniques. All H atoms were calculated for geometric idealized positions, except for H 7 and H 11 which were located in the difference Fourier map. H atoms, when calculated in idealized positions, were riding in the refinement with site-occupancy factors and U (or $U^{i j}$) fixed, but with coordinates free to refine. Structural calculations were carried out on an IBM-PC.

Data collection: Stoe IPDS software. Cell refinement: Stoe IPDS software ($C E L L$). Data reduction: Stoe IPDS software (INTEGRATE). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

This work was supported by project Praxis XXI nr. 2/2.1/QUI/316/94

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1482). Services for accessing these data are described at the back of the journal.

References

Azevedo, F., Carrondo, M. A. A. F. C.T, de Castro, B., Convery, M., Domingues, D., Freire, C., Duarte, M. T., Nielsen, K. \& Santos, I. C. (1994). Inorg. Chim. Acta, 219, 43-54.

Bordas, B., Sohar, P., Matolcsy, G. \& Berencsi, P. (1972). J. Org. Chem. 37, 1727-1730.
Castro, B. de, Gomes, L. \& Pereira, E. (1997). Inorg. Chim. Acta. Accepted for publication.
Holm, R. H. (1960). J. Am. Chem. Soc. 82, 5632-5636.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Manfredotti, A. G. \& Guastini, C. (1983). Acta Cryst. C39, 863-865.
Martin, E. M. \& Bereman, R. D. (1991). Inorg. Chim. Acta, 188, 221-223.
Martin, E. M., Bereman, R. D. \& Singh, P. (1991). Inorg. Chem. 30, 957-962.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1574-1576

(Ketoprofenato)trimethyltin(IV) \dagger

M. Nawaz Tahir, ${ }^{a}$ Dinçer Ülkü, ${ }^{a *}$ Saqib Ali, ${ }^{b}$ Tariq
Masood, ${ }^{b}$ Mohammad Danish ${ }^{b}$ and Mohammad Mazhar ${ }^{b}$
${ }^{a}$ Hacettepe University, Department of Engineering Physics, Beytepe 06532, Ankara, Turkey, and ${ }^{\text {b }}$ Quaid-i-Azam University, Department of Chemistry, Islamabad 45320 ,
Pakistan. E-mail: dulku@eti.cc.hun.edu.tr
(Received 21 February 1997; accepted 15 May 1997)

Abstract

In the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3}\right)\right]$, the Sn atom has fivefold coordination involving three methyl C atoms defining the equatorial plane of a trigonal bipyramid and two O atoms from two carboxylate groups occupying the axial positions. The $\mathrm{Sn}-\mathrm{C}$ bond lengths [$2.106(6), 2.110(5)$ and $2.116(5) \AA$] are very similar. The two carboxylate O atoms have notably different distances to the metal atom [2.184(3) and 2.433 (4) \AA], with an $\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ angle of $174.0(1)^{\circ}$. Bidentate bridging of the carboxylate ligands via trimethyltin groups forms a polymeric structure.

Comment

There are basically two major structure types for compounds with the general formula $\left[R_{3} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)\right]$ (Tiekink, 1994). The trans- $\mathrm{R}_{3} \mathrm{SnO}_{2}$ structure in which the bidentate carboxylate ligand bridges two Sn atoms in a distorted trigonal-bipyramidal coordination is polymeric (Danish et al., 1995; Stocco et al., 1996; Basu Baul \& Tiekink, 1996; Ng \& Kumar Das, 1996; Tahir et al., 1997). The second most frequent structure type is monomeric, with an essentially fourfold coordinated Sn atom involving a secondary interaction with a second O atom (Tiekink, 1994). The title compound, (I), is a new example of a trans type of structure.

(I)

[^0]The coordination around the Sn atom is a distorted trigonal bipyramid, with the three methyl C atoms forming the trigonal plane and two carboxylate O atoms occupying the axial positions (Fig. 1). The Sn atom is 0.1329 (3) \AA out of the equatorial plane (C17, C18 and C19) towards the carboxylate O atom with the shorter $\mathrm{Sn}-\mathrm{O}$ bond length. The $\mathrm{Sn}-\mathrm{C}$ bond lengths [2.106(6), 2.110 (5) and 2.116 (5) \AA] in the equatorial plane are equal within experimental error, but the $\mathrm{Sn}-\mathrm{O} 1[2.184(3) \AA \mathrm{A}]$ and $\mathrm{Sn}-\mathrm{O} 2\left(\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ [2.433 (4) A] bond distances in the trans coordination are very different. In the carboxylate groups, somewhat unequal $\mathrm{C}-\mathrm{O}$ bond lengths are also observed [Cl O1 1.276 (6) and $\mathrm{C} 1-\mathrm{O} 21.255$ (6) \AA], although the difference of 0.021 (8) \AA is not significant. From these observations one could conclude that the shorter Sn O distance indicates a covalent bond and the longer $\mathrm{Sn}-\mathrm{O}$ distance is a coordination bond. The $\mathrm{Ol}-\mathrm{Sn}-$ $\mathrm{O} 2\left(\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ angle is $174.0(1)^{\circ}$. Each trimethyltin group bridges two neighbouring carboxylate ligands and each carboxylate group binds two trimethyltin moieties, forming a polymeric structure. The interplanar angle between the equatorial plane (C 17 , C 18 and C 19) and the carboxylate fragment ($\mathrm{O} 1, \mathrm{C} 1$ and O2) is $88.4(3)^{\circ}$. The 3-benzoyl- α-methylbenzeneacetic acid (ketoprofen) ligand is not planar, the two six-membered rings, $\mathrm{C} 4-\mathrm{C} 9$ and $\mathrm{C} 11-\mathrm{C} 16$, forming an interplanar angle of $59.6(2)^{\circ}$.

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles with arbitrary radii.

Experimental

Trimethyltin chloride ($1.99 \mathrm{~g}, 0.01 \mathrm{~mol}$) and the silver salt of 3-benzoyl- α-methylbenzeneacetic acid ($3.65 \mathrm{~g}, 0.01 \mathrm{~mol}$) were refluxed with constant stirring in dry dichloromethane under argon for 8 h . The reaction mixture was then cooled to room temperature and the solid silver chloride removed by filtration under argon. The filtrate was treated with activated charcoal and concentrated under reduced pressure. The solid
mass obtained after a week was crystallized from a dichloromethane/hexane ($80 / 20$) solvent mixture by slow evaporation under argon at room temperature (yield 83%). IR(KBr): ($\mathrm{C}-$ H aromatic) $3004(\mathrm{~s})$, ($\mathrm{C}-\mathrm{H}$ aliphatic) $2927(\mathrm{~m}),(\mathrm{C}=\mathrm{O})$ $1676(s),(\mathrm{C}=\mathrm{C}) 1600(s),(\mathrm{COO}$ asym) 1574 (s), (COO sym) 1421 (m), (C-C) $546(w),(\mathrm{Sn}-\mathrm{O}) 417(w) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta=\right.$ p.p.m., $\left.{ }^{n} J=\mathrm{Hz}\right): 3.76(q) \mathrm{H} 2,1.47(d) \mathrm{H} 3,7.4$ (t) H5, 7.38 (t) H6, 7.4 (t) H7, 7.76 (s) H9, 7.77 (d) H12, 7.63 (d) $\mathrm{H} 13,7.54$ (d, d, d) $\mathrm{H} 14,7.63$ (d) H15, $7.77 \mathrm{H} 16, \mathrm{H} \alpha 0.5$ (s) ${ }^{2} J$ [57.0]; ${ }^{13} \mathrm{C}$ NMR ($\delta=$ p.p.m., ${ }^{n} J=\mathrm{Hz}$). $179 \mathrm{C} 1,19.68$ C2, 19.37 C3, 132.4 C4, 132.4 C5, 128.4 C6, 128.6 C7, 143
C8, 130.0 C9, 196.6 C10, $138 \mathrm{C} 11,129.2 \mathrm{C} 12,128.3 \mathrm{C} 13$, 131.6 C14, 128.3 C15, 129.2 C16, C $\alpha-2.26,{ }^{\prime} J$ [400].

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3}\right)\right]$
$M_{r}=417.075$
Monoclinic
C2/c
$a=12.4924(2) \AA$
$b=9.8064(2) \AA$
$c=30.4234(3) \AA$
$\beta=98.944(5)^{\circ}$
$V=3681.5(2) \AA^{3}$
$Z=8$
$D_{x}=1.5048 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scans (MolEN; Fair, 1990) $T_{\text {min }}=0.833, T_{\text {max }}=0.999$
3615 measured reflections
3442 independent reflections

Refinement

Refinement on F
$R=0.029$
$w R=0.046$
$S=1.17$
2659 reflections
208 parameters
H atoms: see below
$w=\left[1 / \sigma(F)^{2}\right]$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=10.06-17.89^{\circ}$
$\mu=1.402 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic
$0.40 \times 0.30 \times 0.12 \mathrm{~mm}$
Colourless
es
.

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{Ol}$	2.184 (3)	$\mathrm{Sn}-\mathrm{C} 19$	2.116 (5)
$\mathrm{Sn}-\mathrm{O} 2^{1}$	2.433 (4)	$\mathrm{Ol}-\mathrm{Cl}$	1.276 (6)
$\mathrm{Sn}-\mathrm{Cl} 7$	2.110 (5)	$\mathrm{O} 2-\mathrm{Cl}$	1.255 (6)
$\mathrm{Sn}-\mathrm{Cl} 8$	2.106 (6)		
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 2{ }^{1}$	174.0 (1)	O2 - $\mathrm{Sn}-\mathrm{Cl} 19$	89.0 (2)
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{C} 17$	94.2 (2)	$\mathrm{Cl7-Sn-C18}$	117.0 (2)
$\mathrm{Ol}-\mathrm{Sn}-\mathrm{Cl} 8$	90.4 (2)	C17-Sn-C19	124.7 (2)
$\mathrm{Ol}-\mathrm{Sn}-\mathrm{Cl} 9$	95.9 (2)	C18-Sn-C19	117.1 (2)
$\mathrm{O} 2^{\prime}-\mathrm{Sn}-\mathrm{C} 17$	85.8 (2)	$\mathrm{Sn}-\mathrm{Ol}-\mathrm{Cl}$	118.8 (3)
O2'-Sn-C18	84.2 (2)	$\mathrm{Sn}^{\prime \prime}-\mathrm{O} 2-\mathrm{Cl}$	146.5 (3)
Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.			

All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed geometrically $0.95 \AA$ from their parent C atoms. The H atoms of the methyl C atoms and of C 2 were refined for a few cycles and then a riding model was used for all H atoms, with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$.

Data collection and cell parameters: CAD-4 Express (EnrafNonius, 1994). Data reduction, structure solution and refinement, molecular graphics and preparation of material for publication: MolEN (Fair, 1990). Other programs include PLATON (Spek, 1990).

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAGl of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1153). Services for accessing these data are described at the back of the journal.

References

Basu Baul, T. S. \& Tiekink, E. R. T. (1996). Acta Cryst. C52, 14281430.

Danish, M., Ali, S., Mazhar, M., Badshah, A., Masood, T. \& Tiekink E. R. T. (1995). Main Group Met. Chem. 18, 27-34.

Enraf-Nonius (1994). CAD-4 Express. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ng, S. W. \& Kumar Das, V. G. (1996). Acta Cryst. C52, 1371-1373.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stocco, G., Guli, G., Giraslo, M. A., Bruno, G., Nicolò, F. \& Scopelliti, R. (1996). Acta Cryst. C52, 829-832.
Tahir, M. N., Ülkü, D., Danish, M., Ali, S., Badshah, A. \& Mazhar, M. (1997). Acta Cryst. C53, 183-185.

Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116

Acta Cryst. (1997). C53, 1576-1577

Calcium Potassium Tris(oxalato- O^{1}, O^{2})chromate(III) Pentahydrate

Vanessa Masters, Lawrence R. Gahan and

Colin H. L. Kennard
Department of Chemistry, The University of Queensland, Brisbane, Q 4072, Australia. E-mail: c.kennard@mailbox. uq.edu.au
(Received 3 I October 1996; accepted 23 May 1997)

Abstract

The $\mathrm{Cr}^{\mathrm{III}}$ atom in $\mathrm{CaK}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$, has a regular octahedral geometry with three oxalato groups completing the coordination. Both the calcium and potassium

cations are coordinated to the O atom of the oxalate group.

Comment

This is another example of a $\left[\mathrm{Cr}(\mathrm{ox})_{3}\right]^{3-}$ complex (ox is oxalato) but with different cations (Bulc, Golic \& Siftar, 1982, 1985; Merrachi, Mentzen \& Chassagneux, 1986, 1987; van Niekerk \& Schoening, 1952; Taylor, 1978). This compound is a complex existing as a double salt of monovalent potassium and divalent calcium cations and the chromium(III) cation.

(I)

Fig. 1. PLATON96 (Spek, 1996) view of $\left[\mathrm{Cr}(\mathrm{ox})_{3}\right]^{3-}$ with displacement ellipsoids drawn at the 30% probability level.

Experimental

Crystals of (I) were obtained by slow evaporation of an aqueous solution of the complex.

Crystal data

$\mathrm{CaK}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] .5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=485.32$
Monoclinic
$P 2_{1} / n$
$a=10.923$ (4) \AA
$b=11.114$ (1) A
$c=13.548$ (4) \AA
$\beta=99.52(1)^{\circ}$
$V=1622.1(8) \AA^{3}$
$Z=4$
$D_{x}=1.996 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=1.368 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Well formed needle
$0.53 \times 0.33 \times 0.27 \mathrm{~mm}$
Purple

[^0]: \dagger Alternative name: catena-poly[trimethyltin(IV)- μ-(3-benzoyl- α -methylbenzeneacetato- $O^{1}, O^{1^{\prime}}$)].

